当前位置:首页 > 教学资源

《小数除法》教学教案【精品多篇】

时间:2025-05-31 08:53:04
《小数除法》教学教案【精品多篇】

[摘要]《小数除法》教学教案【精品多篇】为网友投稿推荐,但愿对你的学习工作带来帮助。

小数的除法 篇一

小学数学优秀说课稿《小数除法》 “ 教”立足于“学”

--------一个数除以小数教学设计

一、教学理念

教师的教学方案必须建立在学生的基础之上。新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。”

笔者认为教学中成功的关健在于:教师的“教”立足于学生的“学”。

1、从学生的思维实际出发,激发探索知识的愿望,不同发展阶段的学生在认知水平、认知风格和发展趋势上存在差异,处于同一阶段的不同学生在认知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生 的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。

2、遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的“规律性错误”比如学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误?当然应该是鼓励学生大胆地发表自己的意见、看法、想法。学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。

数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。因此,学生是数学学习的主人,教师应激发学生的学习积极性,要向学生提供充分从事数学活动的机会,帮助他们掌握基本的数学知识、技能、思想、方法,获得丰富的数学活动经验。

二、教学思路

一个数除以小数”即“除数是”是九年义务教育六年制小学数学第九册的重点知识之一。本节教材的重点是:除数是转化成除数是整数的除法时小数点的移位法则。其关键是根据“除数、被除数同时扩大相同的倍数,商不变”的性质,把除数是转化成除数是整数的除法。

1、调查分析

在教学小数除法前一个星期,笔者对曾对班内十五位同学进行了一次简单的调查,(调查结果见附表)笔者认为学生存在很大的教学潜能,这些潜在的“能源”就是教学的依据,教学的资源。从上表可以得出以下结论:

(1) 学生对小数除法的基础掌握的比较巩固。

(2) 学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。

(3) 优秀学生与学习困难生对算理的理解在思维水平上有较大差异。但对竖式书写都不规范。

笔者认为小数除法如果按照教材按部就班教学是很不合理的,不仅浪费教学时间,而且不利于学生从整体上把握小数除法,不利于知识的系统性的形成,更不利于学生对知识的建构。因此,笔者选择了重组教材。(把例6例7与例8有机的结合在一起)

2、利用迁移,明确转化原理

理解除数是的计算法则的算理是“商不变的性质”和“小数点位置移动引起小数大小变化的规律”,把除数是转化成除数是整数的除法后就用“除数是整数的小数除法”计算法则进行计算。为了促进迁移,明确转化移位的原理,可设计如下环节:

(1)、小数点移动规律的复习

(2)、商不变规律的复习

(3)、移位练习

3、试做例题,掌握转化方法

明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:

①.学生试做例题6例题7,并讲出每个例题小数点移位的方法。

②.学生试做例8

③.引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是计算法则。在得出计算法则后,还要注意强调:

(1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。

(2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。

(3)要注意小数除法里余数的数值问题。对这一问题可举例说明。如:57.4÷24,要使学生懂得余数是2.2,而不是22。

4、专项训练,提高“转化”技能

除数是,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。针对上述情况可作专项训练:

①.竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。

②.横式移位练习。练习在横式中移动小数点位置时,由于“划、移、点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。 (1)判断下面的等式是否成立,为什么?

教学过程

(一)复习导入

1.要使下列各小数变成整数,必须分别把它们扩大多少倍?小数点怎样移动?

1.2   0.67    0.725    0.003

2.把下面的数分别扩大10倍、100倍、1000倍是多少?

1.342,  15,   0.5,   2.07。

3.填写下表。

根据上表,说说被除数、除数和商之间有什么变化规律。(被除数和除数同时扩大或缩小相同的倍数,商不变。)

根据商不变的性质填空,并说明理由。

(1)5628÷28=201; (2)56280÷280=( );

(3)562800÷( )=201; (4)562.8÷2.8=( )。

(重点强调(4)的理由。(4)式与(1)式比较,被除数、除数都缩小了10倍,所以商不变,还是201,即562.8÷2.8=5628÷28=201)

(该环节的设计意图是通过学生的讲与练,理解其转化原理是:当除数由小数变成整数时,除数扩大10倍、100倍、1000 ……此处隐藏8272个字…… (3)根据超出用电量的钱数÷单价=超出的千瓦时。 12.6÷0.6=21千瓦时 (4)再求出总千瓦时:21+100=121千瓦时 四、课堂小结:通过本节课的学习,你又收获了哪些新知识?板书设计

《小数除法》教学教案 篇六

教学目标

1.通过自主探索、合作交流,自主构建、理解小数的除法计算法则,并能正确地进行计算。

2.使学生在经历探索计算方法的过程中,进一步体会转化思想的价值,感受数学思考的严谨性。

3.通过学习活动,培养对数学学习的积极情感。

教学重难点:

会笔算除数是整数的小数除法、

教学过程

一、创设情境,设疑导入

谈话:同学们,我们学习了小数的加、减、乘以及小数除以整数的除法,今天我们继续研究有关小数的计算。

(出示场景图)在动物乐园里有两只蜗牛欢欢、乐乐正在树林里游戏呢,我们一起去瞧瞧!(呈现:欢欢每小时爬行3米,一共爬行6.12米;乐乐每小时爬行4.2米,一共爬行7.98米。)

提问:要知道谁爬行的时间少一些?要先求什么?怎样列式呢?

根据学生回答,板书:6.12÷3,7.98÷4.2。

再问:你能估计一下,他们各自的时间大约是多少吗?

谈话:它们爬行的时间到底是多少呢,还需要进行精确的计算。先请大家算出欢欢爬行的时间。

学生练习后,提问:怎样计算除数是整数的小数除法?计算时要注意什么?

谈话:那么,怎样求出乐乐的爬行时间呢?

引导:7.98÷4.2和我们以前学过的小数除法算式有什么不同?

揭示课题:除数是小数的除法。

二、合作交流,探索方法

1.探索计算7.98÷4.2的思路。

除数是小数的除法是我们遇到的新问题,能不能把它转化成我们以前学过的知识来解决呢?先请同学们想一想,然后在小组里互相说一说。

学生在小组里活动,教师巡视。

学生中可能出现以下两种情况:

(1)分别把7.98米和4.2米转化成用“分米”作单位的数量,再进行计算;

(2)分别把7.98米和4.2米转化成用“厘米”作单位的数量,再进行计算。

交流第一种思路时,提问:把“米”作单位的数转化成把“分米”作单位的数,就是把被除数和除数同时乘──10。这样就把除数是小数转化成了怎样的除法?(相机板书:7.98÷4.2→79.8÷42)

<<<123>>>

交流第二种思路时,提问:把“米”作单位的数转化成“厘米”作单位的数,就是把被除数和除数同时乘──100。这样就把除数是小数的除法转化成了怎样的除法?(板书:7.98÷4.2→798÷420)

讨论:上面的两种思路有什么共同的地方?(板书:除数是小数——除数是整数)

追问:这两种转化都是可以的,这样转化的依据是什么?

小结:在数学学习中当面对一个新问题时,我们往往把新问题转化成会解答的旧问题,从而解决新问题。由此看来,转化是我们解决问题的一种重要的思想方法。

2.探索竖式计算的过程。

通过大家的努力,我们已经把要研究的新问题转化成了自己熟悉的旧问题。那么,怎样用竖式算出结果呢?

提问:如果把7.98÷4.2转化成除数小数的除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的被除数是79.8?(板书)

再问:如果把7.98÷4.2转化成整数除法,就要把被除数和除数的小数点都向右移动几位?为什么这时的除数是420?(板书)

要求:选择一个自己喜欢的一个竖式,算出结果,并和同学交流。

指两名学生板演,评讲并反馈选择每种解法的人数。

提问:转化成798÷420也是可以算的,为什么选择这种转化方法的人很少呢?

小结:请同学们闭上眼睛,我们一起再来把7.98÷4.2竖式的转化、计算过程在眼前展示一遍。你觉得在这个过程中最重要的是什么?

说明:用竖式计算环节,虽然出现了不同的方法,但结果相同。在尊重学生选择的基础上,引导学生通过比较进行算法优化,让学生体会把除数转化成整数的除法算式比较方便。学生在这一过程中,再次体会计算策略,而且经历了由直观算理到抽象算法的过渡和演变过程,从而达到对算理的深层理解和算法的切实把握。

三、练习巩固,深化拓展

1.专项练习。

出示:把下列除法式子转化成除数是整数的小数除法,并想一想商的小数点的位置。

<<<123>>>

让学生说一说每一道题可以转化成怎样的除法算式,商的小数点在哪里。

2.先估再算。

下面各题,请同学们先估一估、再计算,看谁能把每一道题都算对。

出示:

5.76÷1.8= 7.05÷0.94= 0.672÷4.2=

学生练习后,组织反馈。

说明:估算是提高计算正确率的有效方法之一。上面的环节留给学生足够的思维空间,在判断、改错、计算的同时,将估算、验算等方法有机地结合在一起,既有利于培养学生的估算能力、反思能力,获得良好的数感,又有利于学生逐步养成把估算、计算、检验相结合的良好习惯,从而提高计算水平与能力。

4.总结计算方法。

提问:“除数是小数的除法”可以怎样计算?计算时要注意什么?

5.拓展练习。

(1)比一比,看谁算的既快又正确。

0.12÷0.25 0.12÷2.5 0.012÷0.25

提问:你能很快算出上面各题的得数吗?自己先试一试,再把你的算法和同学交流。

学生中可以出现两种算法:① 先用竖式算出第一题的商,再直接写出第二、三题的商;② 把第一题的被除数和除数同时乘4,使除数等于1,并直接用0.12×4算出得数,再直接写后面两题的得数。

着重引导学生理解第二种算法的思考过程,并鼓励学生在计算一些比较特殊的除法算式时,可以根据算式的特点,用比较简便方法进行计算。

小结:计算有时要根据具体问题、题目之间的关系,灵活地进行计算。

说明:在学生理解除数是小数的算理,掌握计算方法之后,安排拓展性练习,引导学生根据具体情况灵活确定计算方法,既有利于培养学生良好的审题习惯和灵活计算的学习品质,又能使不同层次的学生都能得到充分的发展,使计算课充满思维的张力和不断探索的活力。

四、全课小结,回顾反思

提问:这节课你学习了什么?怎样计算除数是小数的除法?为什么要把除数是小数的除法转化为除数是整数的除法?计算时要注意哪些问题?

你也可以在搜索更多本站小编为你整理的其他《小数除法》教学教案【精品多篇】范文。

《《小数除法》教学教案【精品多篇】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式